Characterization of mammalian stanniocalcin receptors. Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism.
نویسندگان
چکیده
The polypeptide hormone stanniocalcin (STC) is widely expressed in mammalian tissues. STC acts locally in kidney and gut to modulate calcium and phosphate excretion, and its overexpression in mice results in high serum phosphate, dwarfism, and increased metabolic rate. STC has also been linked to cancer, pregnancy, lactation, angiogenesis, organogenesis, cerebral ischemia, and hypertonic stress. In this report we have characterized the STC receptor and the functional targeting of ligand and receptor to mitochondria. For receptor binding analysis, a stanniocalcin-alkaline phosphatase fusion protein was engineered. Subsequent binding assays using the fusion protein indicated that kidney and liver contained the highest number of binding sites with affinities of 0.8 and 0.25 nm, respectively. Intriguingly, purified mitochondria from both tissues yielded similar high affinity binding sites. Fractionation analysis revealed that the majority of binding sites were localized to the inner mitochondrial membrane. In further studies, we characterized the time course of STC-alkaline phosphatase fusion protein sequestration by intact mitochondria. In situ ligand binding also revealed discrete, displaceable binding to plasma membranes and mitochondria of nephron cells and liver hepatocytes. The existence of mitochondrial receptors prompted a similar search for the ligand. Immunogold electron microscopy revealed that STC was preferentially concentrated in the mitochondria of all nephron segments targeted by STC. Subcellular fractionation revealed that >90% of cellular STC immunoreactivity was mitochondrial, confined to the inner matrix, and similar in size to recombinant STC (50 kDa). In functional studies, recombinant STC had concentration-dependent stimulatory effects on electron transfer by sub-mitochondrial particles. Collectively the evidence implies a role for STC in cell metabolism.
منابع مشابه
Characterization of Stanniocalcin-1 Receptors in the Rainbow Trout
Mammalian stanniocalcin-1 (STC-1) is one of several ligands targeted to mitochondria. High affinity STC-1 receptors are present on the mitochondrial membranes of nephron cells, myocytes, and hepatocytes, to enable ligand sequestration within the matrix. However, STC-1 receptors have not been characterized in fish. Nor is it known if mitochondrial targeting occurs in fish. The aim of the study w...
متن کاملNuclear targeting of stanniocalcin to mammary gland alveolar cells during pregnancy and lactation.
In most mammalian tissues, the stanniocalcin-1 gene (STC-1) produces a 50-kDa polypeptide hormone known as STC50. Within the ovaries, however, the STC-1 gene generates three higher-molecular-mass variants known as big STC. Big STC is targeted locally to corpus luteal cells to block progesterone release. During pregnancy and lactation, however, ovarian big STC production increases markedly, and ...
متن کاملSomatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors
Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...
متن کاملSomatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors
Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...
متن کاملThe Effect of Fibroblast Growth Factor 21 on a Cellular Model of Alzheimer's Disease with Emphasis on Cell Viability and Mitochondrial Membrane Potential
Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder which is associated with extracellular accumulation of amyloid beta (Aβ) plaques. AD is accompanied by mitochondrial dysfunction and energy metabolism reduction. Fibroblast growth factor 21 (FGF21) is an endogenous polypeptide which its beneficial effects have been demonstrated on mitochondrial function, energy m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 47 شماره
صفحات -
تاریخ انتشار 2002